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Abstract

An approximate theory of thin plates is developed that is based on an assumed displacement ®eld, the strains de-

scribed by a Taylor series in the normal distance from the middle surface, the exact strains of the middle surface, and the

equations of equilibrium governing the exact con®guration of the deformed middle surface. In this theory, the exact

geometry of the deformed middle surface is used to derive the strains and equilibrium of plates. This theory reduces to

some existing nonlinear theories through imposition of constraints. Application of this theory does not depend on the

constitutive law because, the physical deformation measure is used. It can also be applied when the response, loading

and geometry of the plate are asymmetric and when the vibration mode number is not small. Predictions of membrane

forces in a rectangular plate and of the equilibrium solution in a rotating disk are sample problems. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

A nonlinear theory for thin rotating disks and translating plates is of interest because of numerous
applications to the modeling of: saws blades (Mote, 1965a), computer memory disks (Luo and Mote, 1999),
translating bands (Mote, 1965b; Wang and Mote, 1994), turbine disks (Campbell, 1924), and others. At
high speeds of common applications, the transverse vibration of these plates can be of large amplitude and
highly nonlinear.

von Karman (1910), for at the ®rst time presented a nonlinear plate theory when the nonlinear stretch
e�ects in the transverse, equilibrium balance were considered. Love (1944), improved the equilibrium
balance in the von Karman theory of 1910, when the curvature based on the nonlinear strain used by von
Karman was used, and Chien (1944a,b) presented an intrinsic theory of shells through di�erential geo-
metry. In the same year, Reissner (1944) introduced the deformation caused by shear strain into the
bending of elastic plates through an assumed displacement ®eld. Then, following the von Karman theory,
Reissner (1957) presented his nonlinear plate theory that included shear deformation. Herrmann (1955)
derived a plate theory governing dynamic motion with small elongation and shear deformation, but
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moderately large rotation. In the aforementioned references, the strain of the middle surface, approximated
by either the linear terms of its Taylor series expansion about the unstrained middle surface of thin plates or
the Lagrangian and Eulerian strains of the deformed middle surface was used. The in-plane equilibrium
balances are referred in the undeformed middle surface. In nonlinear plate theories, the von Karman
equations have been used to investigate the nonlinear vibration of a spinning disk (Nowinski, 1964, 1981;
Renshaw and Mote, 1995; Hamidzadeh et al., 1998). The von Karman equations considered the nonlinear
e�ects only in the transverse direction, and such equations did not include the Coriolis acceleration.

In 1990, Wang developed a two-dimensional theory reduced from the three-dimensional theory for a
transversely isotropic body through the decomposition of general displacements in the three-dimensional
body into the asymmetrical and symmetrical deformations, and Wang discussed the static plate problem
rather than the dynamic plate theory. Hodges et al. (1993) developed the geometrically nonlinear plate
theory through the introduction of warping displacement, and extra equations were presented for deter-
mining the warping displacement.

For a complete consideration of geometrical nonlinearity in plates, a displacement ®eld at any material
point is expressed by a series form of displacements in the middle surface and a normal distance from the
middle surface in the transverse direction. The series expression is di�erent from the displacement de-
composition in Wang (1990). It also di�ers from the director series expression of displacements given by
Naghdi (1972). In such a director expression, the in®nite directors are unknown. However, the series ex-
pression of displacements proposed in this article can be determined through the plate assumptions, such as
Kirchho� assumptions, etc. From the assumed displacement ®eld, an approximate theory of geometrically
nonlinear plates will be developed herein through the nonlinear deformation theory in a 3-D body.

In this article, the physical strain and equilibrium equations in the plates will be derived based on the
exact geometry of the deformed middle surfaces. This theory reduces to some established, approximate,
nonlinear theories of the thin plates through imposition of constraints. Predictions of membrane forces in a
rectangular plate and of the equilibrium solution in a rotating disk will be presented as sample problems.

2. A nonlinear theory of thin plates

2.1. Deformation of a 3-D body

Consider a material particle P Y 1; Y 2; Y 3� � in a ¯exible body B0 at the initial state as shown in Fig. 1. The
position R of the particle is described by Y K :

R � Y KIK � Y 1I1 � Y 2I2 � Y 3I3; �1�

where IK are unit vectors in the ®xed coordinates. In the local curvilinear reference frame, R is represented
by

R � X KGK � X 1G1 � X 2G2 � X 3G3; �2�

where the component X K � R �GK in Eringen (1962) and the initial base vectors GK � GK X 1;X 2;X 3; t0� �
are

GK � oR

oX K
� oY M X 1;X 2;X 3; t0� �

oX K
IM � Y M

;K IM �3�

with magnitudes
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GK x� �j j �
���������
GKK

p
�

���������������������������������������������������������������������
oY 1

oX K

� �2

� oY 2

oX K

� �2

� oY 3

oX K

� �2
s ������

t�t0

�no summation on K� �4�

and GKL � GK �GL are metric coe�cients in the body B0.
On deformation of B0, the particle at point P moves through displacement u to position p, and the

particle Q, in®nitesimally close to P X 1;X 2;X 3; t0� �, moves through u� du to q in the neighborhood of
p X 1;X 2;X 3; t� �, as illustrated in Fig. 2.

The position of point p is

r � R� u � �X K � uK�GK ; �5�
where the displacement is u � uKGK : Thus, PQ � dR and pq � dr are

dR � GK dX K ; dr � GK dX K � du �6�

Fig. 2. Deformation of a di�erential linear element.

Fig. 1. A material particle P.
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and the displacement becomes

du � uK
;L dX L GK � uK;L dX L GK ; �7�

where uK
;L � ouK=oX L� t0C

K
MLuM and t0C

K
ML is the Christo�el symbol in Eringen (1967). The semicolon rep-

resents covariant partial di�erentiation. From Eqs. (6) and (7), we obtain

dr � uK
;L

�
� dK

L

�
GK dX L: �8�

The Lagrangian strain tensor ELN referred to the initial con®guration is from Eringen (1962).

ELN � 1
2

uL;N

�
� uN ;L � uK

;LuK;N

�
: �9�

As in Eringen (1962) (also see, Malvern, 1969), the change in length of dR per unit length gives

eN
K
�

dr
K

��� ���ÿ dR
K

��� ���
dR

K

��� ��� �
��������������������
1� 2

EKK

GKK

r
ÿ 1; �10�

where eN
K

is the relative elongation along GK . The unit vectors along dR and dr in Eringen (1967) are

N � dR

dRj j �
1���������
GKK
p GK ; n � dr

drj j �
�uK

;L � dK
L �������������������������

GKK � 2EKK
p GK : �11�

Accordingly, unit vectors of the deformed con®guration in the directions g1 and g2 are

n
1
�

dr
1

dr
1

���� ���� ; n
2
�

dr
2

dr
2

���� ���� : �12�

Let H12 and h12 be the induced angles between n
1

and n
2

before and after deformation. Then

�13�

and the shear strain is

c12 � H12 ÿ h12 � cosÿ1 G12��������������
G11G22

p ÿ cosÿ1 G12 � 2E12����������������������������������������������������G11 � 2E11��G22 � 2E22�
p !

: �14�

The other shear strains are obtained in a similar manner.
From Eq. (13), the direction cosine of the rotation is

cos N
K
; n

L

� �
�

dR
K
� dr

L

dR
K

��� ��� dr
L

��� ��� �
dL

K � uL
;K���������������

1� EKK
GKK

q �no summation on K�: �15�
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In addition, the area and volume changes are given by

da
IJ

dA
IJ

�
1� eN

I

� �
1� eN

J

� �
sin hIJ

sin HIJ
;

dv
dV
� dI

J

��� � uI
;J

���; �16�

where dv; dV are the di�erential material volumes after and before deformation, respectively; �j j repre-
sents the determinant. The areas after and before deformation are da

IJ
� dr

I
� dr

J
and dA

IJ
� dR

I
� dR

J
where

I 6� J .

2.2. Strain in thin plates

Let the Lagrangian coordinates be a rectangular Cartesian system:

Y 1 � X 1 � x; Y 2 � X 2 � y; Y 3 � X 3 � z �17�
and

u � ui� vj� wk; �18�
where I1 � i; I2 � j and I3 � k. Therefore, from Eqs. (17) and (18), we have

GKK � 1; GKL � 0; CK
ML � 0; HKL � p

2
K� 6� L�: �19�

Then, the physical strains in Eqs. (10) and (14) become

eI �
���������������������������������������������
dK

I � uK;I

ÿ �
dK

I � uK;I

ÿ �q
ÿ 1 �summation on K�; �20�

cIJ � sinÿ1 dK
I � uK;I

ÿ �
dK

J � uK;J

ÿ ����������������������������������������������
dK

I � uK;I

ÿ �
dK

I � uK;I

ÿ �q ����������������������������������������������
dK

J � uK;J

ÿ �
dK

J � uK;J

ÿ �q
0B@

1CA �summation on K�; �21�

where I ; J ;Kf g � 1; 2; 3f g, 1 � x; 2 � y; 3 � zf g and u1 � u; u2 � v; u3 � wf g. For reduction of the
three-dimensional body displacements to a two-dimensional body form, displacements can be expressed in
a Taylor series expanded about the displacement of the middle surface. Thus, similar to the basic kine-
matics hypothesis in Wempner (1973), the displacement ®eld is represented by

uI � u�0�I �x; y; t� �
X1
n�1

znu�n�I �x; y; t�; �22�

where u 0� �
I denotes displacements of the middle surface, and the u n� �

I n � 1; 2; . . .� � are relative rotations.
Substitution of Eq. (22) into Eqs. (20) and (21) and collection of like powers of z gives

ea � e�0�a �
da

I � u�0�I ;a

� �
u�1�I ;a

1� e�0�a

� � z�
2 da

I � u�0�I;a

� �
u�2�I;a

h i
� u�1�I;au

�1�
I ;a

1� e�0�a

8><>: ÿ
da

I � u�0�I ;a

� �
u�1�I;a

h i2

1� e�0�a

� �3

9>=>;z2 � � � � ; �23�

e3 � e�0�3 �
dI

3 � u�1�I

� �
u�2�I

1� e�0�a

z�
4u�2�I u�2�I � 6 dI

3 � u�1�I

� �
u�3�I

� �
1� e�0�3

8><>: ÿ
dI

3 � u�1�I

� �
u�2�I

h i2

1� e�0�3

� �3

9>=>;z2 � � � � ; �24�
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c12 � c�0�12 �
1

cos c�0�12

d1
I � u�1�I ;1

� �
d2

I � u�1�I ;2

� �
1� e�0�1

� �
1� e�0�2

� �
8><>: ÿ sin c�0�12

d1
I � u�0�I;1

� �
u�1�I;1

1� e�0�1

� �2

264 �
d2

I � u�0�I ;2

� �
u�1�I ;2

1� e�0�2

� �2

375
9>=>;z� � � � ;

�25�

ca3 � c�0�a3 �
1

cos c�0�a3

da
I � u�1�I ;a

� �
d3

I � u�1�I

� �
1� e�0�a

� �
1� e�0�3

� �
8><>: ÿ sin c0

a3

da
I � u�0�I;a

� �
u�1�I;a

1� e�0�a

� �2

264 �
2 d3

I � u�1�I

� �
u�2�I

1� e�0�3

� �2

375
9>=>;z� � � � ;

�26�
where a � 1; 2f g. The strains of the middle surface, following Eqs. (20)±(22), at z � 0, are

e�0�a �
������������������������������������������������
dK

a � u�0�K;a

� �
dK

a � u�0�K;a

� �r
ÿ 1 and e�0�3 �

������������������������������������������������
dK

3 � u�0�K

� �
dK

3 � u�0�K

� �r
ÿ 1; �27�

c�0�12 � sinÿ1
dK

1 � u�0�K;1

� �
dK

2 � u�0�K;2

� �
1� e�0�1

� �
1� e�0�2

� �
0@ 1A and c�0�a3 � sinÿ1

dK
a � u�0�K;a

� �
dK

3 � u�0�K

� �
1� e�0�a

� �
1� e�0�3

� �
0@ 1A: �28�

In Eqs. (23)±(26), prediction of strain requires speci®cation of three constraints for determination of the
three sets u n� �

I I � 1; 2; 3; n � 1; 2; . . .� �; like the assumptions ca3 � e3 � 0� � as in Kirchho� (1850).

2.3. Equations of equilibrium for thin plates

Consider a thin plate subjected to the inertial force quI;tt, where q � R h�

ÿhÿ q0 dz and q0 is the density of the
plate; body force f � fIf g; surface loading p�I ; p

ÿ
I

� 	
, where the superscripts + and ÿ denote the upper and

lower surfaces; external moment m0
a before deformation. The distributed loading q � qIf g has the com-

ponents

qI � p�I ÿ pÿI �
Z h�

ÿhÿ
fI dz and ma � m0

a � h�p�a � hÿpÿa �
Z h�

ÿhÿ
fa zdz; �29�

where h � h� � hÿ. From Eqs. (14) and (16), the distributed loading after deformation becomes

fq�I g � fqIg=��1� e1��1� e2�cos c12�: �30�
As the physical deformation measure is used in the Lagrangian coordinates, the constitutive laws based on
such measure are

rIJ � F �KIJMN ; eMN ; t� �31�
used for the determination of the physical stresses directly (or sometime, termed the Kirchho� stress), where
KIJMN is material properties (e.g.,YoungÕs modulus, PoissonÕs ratio). Eq. (31) can be either HookeÕs law for
linear elastic materials or other similar laws for plasticity and others. Based on such physical stresses, the
internal, resultant forces and moments can be determined in the Lagrangian coordinates. As in Wempner
(1973), the use of Eqs. (16) and (31) gives the stress resultant forces and couples in the deformed plate:

Nab �
Z h�

ÿhÿ
rab��1� ea��1� e3�cos ca3�dz; Mab �

Z h�

ÿhÿ
rab

z

1� u�1�3

��1� ea��1� e3�2 cos ca3�dz; �32�
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where Nab is the membrane forces and Mab is the bending and twisting moments per unit length and a; bf g �
1; 2f g. If the Kirchho� assumption e3 � 0� � is used, Eq. (32) reduces to the form as in the textbook. The

transverse shear forces are derived from the equations of equilibrium. The force balances based on the
deformed middle surface in the three directions of Lagrangian coordinates, and the use of Eq. (15), give

Nab db
I � u�0�I;b

� �
1� e�0�b

24 �
Qa d3

I � u�1�I

� �
1� e�0�3

35
;a

� qI � qu�0�I;tt � Izu
�1�
I;tt �summation on a; b�; �33�

and the balances of moments in the Lagrangian coordinates, and the use of Eq. (15), give

Mab db�1
c�1 � u�0�c�1;b�1

� �
1� e�0�b�1

24 35
;a

� N12

�ÿ1�a�cw�0�;a�c da
c � u�0�c;a

� �
1� e�0�c�1

ÿ Qc

1� u�1�3

� �
da

c � u�0�c;c

� �
ÿ u�1�c u�0�3;c

1� e�0�3

24 35� mc � Izu�0�c;tt � Jzu
�1�
c;tt �no summation on c�; �34�

Mabu�0�3;b�1

1� e�0�b�1

" #
;a

�
Nab db

a � u�0�a;b

� �
1� e�0�b

24 � Qa�1u�1�a

1� e�0�3

35 1
�
� u�0�a�1;a�1

�
� 0; �35�

where Iz �
R h�

ÿhÿ q0zd z; Jz �
R h�

ÿhÿ q0z2 dz. For any Greek symbol index m 2 a; b; cf g � 1; 2f g, m� 1 becomes
mÿ 1 if m� 1 > 2. Therefore, the balances of equilibrium for thin plates give Eqs. (33)±(35). They together
with Eqs. (25)±(28) constitute this approximate nonlinear theory for thin plates.

The equilibrium equations are based on the deformed middle surface in the Lagrangian coordinates. The
alternative approach presented in Wempner (1973) can derive the similar equilibrium equations. With Eq.
(32)±(35) can also be derived by using Boussinesq±Kirchho� equations in Guo (1980).

3. Reduction to established theories

3.1. Kirchho� plate theory

The Kirchho� assumptions specify e3 � ca3 � 0. From Eqs. (20) and (21), these constraints become

d3
I

ÿ � uI;3

�
d3

I

ÿ � uI;3

� � 1; �36�

dIi
a

ÿ � uI;a

�
dI

3

ÿ � uI;3

� � 0: �37�
Substitution of Eq. (22) into Eqs. (36) and (37), expansion of them in Taylor series in z and the vanishing of
the zero-order terms in z give

d3
I

�
� u�1�I

�
d3

I

�
� u�1�I

�
� 1; �38�

dI
a

ÿ � uI;a

�
dI

3

�
� u�1�I

�
� 0: �39�

u 1� �
I can be obtained from Eqs. (38) and (39) ®rst. From the Taylor series, vanishing of the ®rst-order terms

in z gives three equations in u 2� �
I similar to Eqs. (38) and (39). The three equations plus u 1� �

I give u 2� �
I ; u n� �

I for
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n � 3; 4; . . . can be determined in a similar manner. With the ®rst-order approximation in Eqs. (36) and
(37), the solution to Eqs. (38) and (39) with 1 � x; 2 � y; 3 � zf g and u1 � u; u2 � v; u3 � wf g is

u1 �
m�0�;x w�0�;y ÿ 1� m�0�;y

� �
w�0�;x�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

m�0�;x w�0�;y ÿ 1� m�0�;y
� �

w�0�;x
h i2

� u�0�;y w�0�;x ÿ 1� u�0�;x
� �

w�0�;y
h i2

� 1� u�0�;x
� �

1� m�0�;y
� �

ÿ w�0�;x w�0�;y
h i2

r ;

�40�

u2 �
u�0�;y w�0�;x ÿ 1� u�0�;x

� �
w�0�;y�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

m�0�;x w�0�;y ÿ 1� m�0�;y
� �

w�0�;x
h i2

� u�0�;y w�0�;x ÿ 1� u�0�;x
� �

w�0�;y
h i2

� 1� u�0�;x
� �

1� m�0�;y
� �

ÿ w�0�;x w�0�;y
h i2

r ;

�41�

u3 �
1� u�0�;x
� �

1� m�0�;y
� �

ÿ w�0�;x w�0�;y�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
m�0�;x w�0�;y ÿ 1� m�0�;y

� �
w�0�;x

h i2

� u�0�;y w�0�;x ÿ 1� u�0�;x
� �

w�0�;y
h i2

� 1� u�0�;x
� �

1� m�0�;y
� �

ÿ w�0�;x w�0�;y
h i2

r
ÿ 1;

�42�
where the superscript `` 1� �'' has been dropped for notational convenience. Substitution of Eqs. (39)±(42)
into Eqs. (25) and (27) gives

ea � e�0�a �
da

i � u�0�i;a

� �
ui;a

1� e�0�a

� � z� ui;aui;a

1� e�0�a

8><>: ÿ
da

i � u�0�i;a

� �
ui;a

h i2

1� e�0�a

� �3

9>=>;z2 � � � � ; �43�

c12 � c�0�12 �
1

cos c�0�12

d1
i � ui;1

ÿ �
d2

i � ui;2

ÿ �
1� e�0�1

� �
1� e�0�2

� �
8><>: ÿ sin c�0�12

d1
i � u�0�i;1

� �
ui;1

1� e�0�1

� �2

264 �
d2

i � u�0�i;2

� �
ui;2

1� e�0�2

� �2

375
9>=>;z� � � �

�44�
Substitution of Eq. (39) in Eqs. (33)±(35) yields the equilibrium balance for Kirchho�Õs plates.

3.2. Moderately large de¯ection of thin plates

For moderately large transverse de¯ection, assumptions for the middle surface are:

u�0�1;a � o u�0�2;a

� �
� o w�0�;a

� �2
� �

� 1; 1� e�0�a � 1: �45�

Therefore, the strains of the middle surface become

e�0�a � u�0�a;a � 1
2

w�0�;a
� �2

; c0
12 � u�0�2;1 � u�0�1;2 � w�0�;1 w�0�;2 : �46�

Substitution of Eqs. (45) and (46) into Eqs. (40)±(42) generates

ua � ÿw�0�;a ; u3 � 0: �47�
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Substitution of Eqs. (45)±(47) into Eqs. (30), (43) and, (44), and retention of terms that are ®rst order in z,
leads to

ea � u�0�a;a � 1
2

w�0�;a
� �2

ÿ w�0�;aaz; c12 � u�0�2;1 � u�0�1;2 � w�0�;1 w�0�;2 ÿ 2w�0�;12z: �48�

From Eqs. (38), (45) and (47), the equilibrium balances in Eqs. (33)±(35) give

Nab

h
ÿ Qbw�0�;a

i
;b
� qa � qu�0�a;tt ÿ Iw�0�;att; �49�

�Nabw�0�;b � Qa�;a � q3 � qw�0�;tt ; �50�

Mab;b � N12w�0�;a�1 ÿ Qa � ma � Iu�0�a;tt ÿ Jw�0�;att: �51�
With density q0 constant and hÿ � h� � h=2, we have Iz � 0; Jz � q0h3=12. When the rotary inertia is
neglected, Eq. (51) becomes

Mab;b � N12w�0�;a�1 ÿ Qa � ma � 0; �52�
when ma � qa � 0, the shear Qa in Eq. (49) and N12 in Eq. (52) vanish, and Eqs. (49), (50) and (52) at
h� � hÿ � h=2 reduce to the nonlinear plate theory of Herrmann (1955).

The von Karman plate theory is recovered by letting ma � qa � 0 and neglecting the terms w�0�;a � 1 in
Eqs. (49) and (52):

Nab;b � 0; �53�

Mab;b ÿ Qa � 0: �54�
Substitution of Eqs. (53) and (54) into Eq. (50) gives

Nabw�0�;ab �Mab;ab � q3 � qw�0�;tt ; �55�
where the von Karman theory is applicable to plates of the moderately large de¯ection and small rotation,
the theory in Eqs. (48)±(51) is applicable to plates of moderately large de¯ection and rotation because of
Eq. (45).

3.3. Linear plate theory

The linear theory for thin plates is recovered from Eqs. (25)±(28) and Eqs. (33)±(35), when the Kirchho�
constraints are imposed: the elongation and shear in the plate are small compared to unity; the rotations are
negligible compared to the elongation and shear:

u�0�1;a � o�u�0�2;a� � o�w�0�;a � � 1; 1� e�0�a � 1: �56�
From the foregoing, the strains of the middle surface become

e�0�a � u�0�a;a; c�0�12 � u�0�2;1 � u�0�1;2: �57�
Substitution of Eqs. (56) and (57) into Eqs. (39)±(42) generates the rotation angles given by Eq. (47). With
Eqs. (47), (56) and (57), Eqs. (33)±(35) reduce to the linear plate theory

Nab;b � qa � qu�0�a;tt; Mab;ab � q3 � qw�0�;tt : �58�
The shear forces are given by Eq. (54).
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4. Applications

4.1. Membrane forces in a rectangular plate

Consider a thin, simply supported, rectangular plate subjected to a distributed transverse surface load q.
The length, width and thickness of the plate are l, b and h, respectively. When HookeÕs law for linearly
elastic, isotropic materials is used, from Eq. (32) and Eqs. (48)±(51), the equations governing the equilib-
rium state for a nonlinear, isotropic rectangular plate at ma � qa � 0, q3 � q, are

u;xx � 1ÿ l
2

u;yy � 1� l
2

m;xy � w;x w;xx

�
� 1ÿ l

2
w;yy

�
� 1� l

2
w;xyw;y

� h2

12
�r2w�;xw;x

h i
;x

�
� �r2w�;yw;x

h i
;y

�
� 0; �59�

m;yy � 1ÿ l
2

m;xx � 1� l
2

u;xy � w;y w;yy

�
� 1ÿ l

2
w;xx

�
� 1� l

2
w;xyw;x

� h2

12
�r2w�;yw;y

h i
;y

�
� �r2w�;xw;y

h i
;x

�
� 0; �60�

h2

12
r4wÿ u;x

���
� 1

2
�w;x�2

�
� l vy

�
� 1

2
�w;y�2

��
w;x � �1ÿ l��v;x � u;y � w;xw;y�w;y

�
;x

ÿ v;y

���
� 1

2
�w;y�2

�
� l u;x

�
� 1

2
�w;x�2

��
w;y � �1ÿ l��v;x � u;y � w;xw;y�w;x

�
;y

� �1ÿ l2�q
Eh

;

�61�
where q0; E and l are density, YoungÕs modulus and PoissonÕs ratio, respectively. The superscript ``�0�'' has
been dropped for notational convenience. The h2 terms in Eqs. (59) and (60) and the �1ÿ l� terms in Eq. (61)
that are ignored in the von Karman theory are the contributions of normal and shear forces in the in-plane.

With Eq. (32), Eqs. (45)±(48), application of the HookeÕs law to linear, isotropic, elastic materials gives
membrane forces Nx, Ny , Nxy , i.e.,

Nx � Eh
1ÿl2 u;x � 1

2
�w;x�2

� �
� l m;y � 1

2
�w;y�2

� �h i
;

Ny � Eh
1ÿl2 m;y � 1

2
�w;y�2

� �
� l u;x � 1

2
�w;x�2

� �h i
;

Nxy � Eh
2�1�l� �m;x � u;y � w;xw;y�

9>>=>>; �62�

and the boundary conditions are

u�0; y� � u�l; y� � w�0; y� � w�l; y� � 0; w;xx�0; y� � w;xx�l; y� � 0;
v�x; 0� � v�x; b� � w�x; 0� � w�x; b� � 0; w;yy�x; 0� � w;yy�x; b� � 0

�
: �63�

A transverse displacement in Eq. (61), satisfying the displacement boundary conditions of Eq. (63), can
be represented by

w �
X1
m�1

X1
n�1

hfmn sin
mpx

l

� �
sin

npy
b

� �
; �64�

where fmn is unknown. To compare with existing solutions given by the von Karman theory, a single mode
�m; n� is considered here. Following the procedure of Chu and Herrmann (1956), one obtains the solutions
for u and v from Eqs. (59), (60), (63) and (64) as
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�65�

where fmn can be predicted in Eq. (61) through the Galerkin method. For the von Karman theory, the
displacement in Chu and Herrmann (1956) is

�66�

The terms in Eq. (65), not appearing in Eq. (66) arise from the shear forces in the longitudinal directions.
When p2h2� mb� �2 � nl� �2� � 6 bl� �2, the additional terms can be neglected. When the thickness is very small
compared to the width and the mode number is very small, Eqs. (65) and (66) can give u � m � 0 by the
linear theory for fmn � 1. The h=b� �2 and h=l� �2 terms in Eq. (65) become signi®cant as the thickness in-
creases and when m, n become large.

Fig. 3. Rotating disk with fully clamped hub.
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4.2. Equilibrium solution for rotating disk

Consider the uniform, ¯exible, circular disk rotating with constant angular speed X as shown in Fig. 3.
The coordinate r; #; t� � rotates with the disk and r; h; t� � remains ®xed in space. They satisfy

h � #� Xt: �67�

Consider equilibrium solutions of the plate undergoing large amplitude displacement. Neglect of the in-
plane inertia in Eqs. (49)±(51), elimination of time dependence, and transformation to polar coordinates
give

ur;rr � ur;r

r
ÿ ur

r2
� 1ÿ l

2r2
ur;hh � 1� l

2r
uh;rh ÿ 3ÿ l

2r2
uh;h � uz;r uz;rr

�
� 1ÿ l

2r2
uz;hh

�
� 1� l

2r2
uz;rhuz;h

� 1ÿ l
2r

�uz;r�2
�

ÿ 1

r2
�uz;h�2

�
� h2

12
�r2uz�;ruz;r

h i
;r

�
� 1

r2
�r2uz�;huz;r

h i
;h

�
� q0�1ÿ l2�

E
X2r � 0; �68�

uh;hh

r2
� 1ÿ l

2
uh;rr

�
� uh;r

r
ÿ uh

r2

�
� 1� l

2r
ur;rh � 3ÿ l

2
ur;h � 1� l

2r
uz;ruz;rh

� uz;h

r
uz;hh

r2

�
� 1ÿ l

2
uz;rr

�
� uz;r

r

��
� h2

12

1

r
�r2uz�;ruz;h

� �
;r

(
� 1

r3
�r2uz�;huz;h

h i
;h

)
� 0 �69�

1

r
r ur;r

( 
� �uz;r�2

2
� l

ur

r

"
� uh;h

r
� �uz;h�2

2r2

#)
uz;r � �1ÿ l� uh;r

h
� ur;h

r
ÿ uh

r
� uz;ruz;h

r

i
uz;h

!
;r

� 1

r
1

r
ur

r

( 
� uh;h

r
� �uz;h�2

2r2
� l ur;r

"
� �uz;r�2

2

#)
uz;h � �1ÿ l� uh;r

h
� ur;h

r
ÿ uh

r
� uz;ruz;h

r

i
uz;r

!
;h

� 1ÿ l2� �q
Eh

� h2

12
r4w� q0 1ÿ l2� �

E
X2uz;hh: �70�

If the h2 terms in Eqs. (68) and (69) and the 1ÿ l� � terms in Eq. (70) are neglected, Eqs. (68)±(70) reduce to
the von Karman equations, as presented in Nowinski (1964) for equilibrium of the rotating disk. Such
terms in Eqs. (68)±(70) are the contributions of normal and shear force in the in-plane. When the HookeÕs
law for linear, isotropic, elastic materials is used, the membrane forces Nr;Nh;Nrhf g through Eqs. (45)±(47)
are:

�71�
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The boundary conditions are

�72�

and the radial and shear forces at r � b satisfying Nr � Nrh � 0 give

ur;r � 1

2
�uz;r�2 � l

1

r
ur

�
� 1

r
uh;h � 1

2r2
�uz;h�2

�
� 0; uh;r � 1

r
ur;h ÿ 1

r
uh � 1

r
�uz;r��uz;h� � 0: �73�

Let the modal transverse load be

q � qc cos�sh� � qs sin�sh�: �74�

and an approximate solution satisfying the boundary condition (72) be

uz � h
X4

m�0

Cm
r
b

� �m�s
fsc cos sh� �� � fss sin sh� ��: �75�

Substitution of Eq. (75) into Eqs. (68) and (69) and their solutions into Eqs. (72) and (73) give modal ur; uh.
Substitution of ur; uh; uz in Eq. (71) predicts the approximate equilibrium membrane forces. Finally, ap-
plication of the Galerkin method to Eq. (70) generates the approximate equilibrium solution.

The nondimensionalized de¯ection and transverse load amplitudes are:

A �
����������������
f 2

sc � f 2
ss

q
; Q � q0�1ÿ l2�a

bE
; q0 �

���������������
q2

c � q2
s

q
; �76�

where

a �
X4

m�0

1

m� s� 1
�1ÿ jm�s�1�Cm; b � 1

12

X4

m�0

X4

n�0

1

m� n� 2s� 1
1
ÿ ÿ jm�n�2s�1

�
CmCn: �77�

Note that j � a=b is the clamping ratio. Coe�cients Cm are determined through satisfaction of the
boundary condition, and coe�cients a and b are generated by application of the GalerkinÕs method to
Eq. (70).

Comparisons of predictions of the equilibrium amplitude A for load amplitude Q by this theory, the von
Karman theory and the linear theory are illustrated in Figs. 4±6 for a model of a 3.5 in. diameter, computer
memory hard disk with inner and outer radii a � 15:5 mm and b � 43 mm, respectively. This theory and
the von Karman theory give identical prediction for s � 0 in Fig. 4 because of the symmetric loading and
response. The relative errors in the transverse load between the linear and nonlinear theories at A � 1:0 are
about 12.2% and 9.8% for X � 0 and 20kÿ rpm. For a speci®ed Q � 50 at s � 0, the relative errors for the
displacement amplitudes between the linear and nonlinear theories are less than 8% and 5% for X � 0 and
20kÿ rpm. When s 6� 0, the transverse load and response of the disk are asymmetric. For s � 1 in Fig. 5,
predictions by the two nonlinear theories are close when A6 0:2, and their relative error in the transverse
load between the nonlinear theories is less than 4%. Predictions of the linear theory are close to the
nonlinear theories when A6 0:1 and the relative error of the linear theory to the theory is less than 2.5%.
Similar to the discussion for s � 0, for a speci®ed Q � 20 at s � 1, the relative errors of the displacement
amplitudes of the linear theory and the von Karman theory to the proposed theory are about 20% and 8%
at X � 0. For s � 4 in Fig. 6, the three theories, with the maximum relative error less than 1%, are in good
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agreement when A6 0:1. When A6 0:2, the linear theory is in agreement with the proposed theory with less
than 3% relative error. The von Karman theory gives results poorer than the linear theory because the von
Karman theory models a balance of forces created by the curvature of the disks only in the transverse

Fig. 5. The equilibrium de¯ection versus transverse load (s � 1) at X � 0. The solid, dot-dash and dash lines denote the disk dis-

placements predicted by this theory, the von Karman theory and the linear theory (a � 15:5 mm, b � 43 mm, h � 0:775 mm,

q0 � 2770 kg=m
3
, E � 73 GPa, l � 0:33).

Fig. 4. The equilibrium de¯ection versus transverse load (s � 0). The solid, dot-dash and dash lines denote the disk displacements

predicted by this theory, the von Karman theory and the linear theory (a � 15:5 mm, b � 43 mm, h � 0:775 mm, q0 � 2770 kg=m
3
,

E � 73 GPa, l � 0:33).
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direction. The membrane forces arising from force balances in the in-plane directions and moment balances
are not included. For the symmetric response, the von Karman theory is identical to the proposed theory.
For asymmetric responses, two nonlinear theories will give di�erent predictions. Especially, for s � 4, the
von Karman theory gives the response showing the softening-spring behavior but the proposed theory gives
the response showing the hardening-spring behavior. The softening-spring behavior of the rotating disks
indicates that the corresponding sti�ness becomes small when the external loading increases. However, for
the hardening-spring behavior, the sti�ness of such rotating disks increases with increasing the external
loading. Predictions of displacement of the disk produced by the three plate theories deviate when the disk
de¯ection and/or the nodal diameter s become large. Agreement of those predictions improves as X in-
creases.

5. Conclusions

An approximate theory for geometrically nonlinear plates is developed in this article. The theory includes
the physical strains and equilibrium equations of the plates based on the exact geometry of the deformed
middle surface in the Lagrangian coordinates. Limitations on the constitutive laws are not required because
the physical strains instead of the Lagrangian and Eulerian strains are used to develop such approximate
theory. Therefore, the geometrical relations and equilibrium equations presented in the proposed theory are
applicable for all deformation processes of thin plates, such as elasticity, plasticity and the others.
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Fig. 6. The equilibrium de¯ection versus transverse load (s � 4). The solid, dot-dash and dash lines denote the disk displacements

predicted by this theory, the von Karman theory and the linear theory (a � 15:5 mm, b � 43 mm, h � 0:775 mm, q0 � 2770 kg=m
3
,

E � 73 GPa, l � 0:33).
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